Pengertian Rectifier (Penyearah Gelombang) dan Jenis-jenisnya

Pengertian Rectifier (Penyearah Gelombang) dan Jenis-jenisnya

7:19 AM 0

Penyearah Gelombang Penuh (Full Wave Rectifier)
Pengertian Rectifier (Penyearah Gelombang) dan Jenis-jenisnya – Rectifier atau dalam bahasa Indonesia disebut dengan Penyearah Gelombang adalah suatu bagian dari Rangkaian Catu Daya atau Power Supply yang berfungsi sebagai pengubah sinyal AC (Alternating Current) menjadi sinyal DC (Direct Current). Rangkaian Rectifier atau Penyearah Gelombang ini pada umumnya menggunakan Dioda sebagai Komponen Utamanya. Hal ini dikarenakan Dioda memiliki karakteristik yang hanya melewatkan arus listrik ke satu arah dan menghambat arus listrik dari arah sebaliknya. Jika sebuah Dioda dialiri arus Bolak-balik (AC), maka Dioda tersebut hanya akan melewatkan setengah gelombang, sedangkan setengah gelombangnya lagi diblokir. Untuk lebih jelas, silakan lihat gambar dibawah ini :
Pengertian Rectifier (Penyearah Gelombang)

Jenis-jenis Rectifier (Penyearah Gelombang)

Pada dasarnya, Rectifier atau Penyearah Gelombang dibagi menjadi dua jenis yaitu Half Wave Rectifier (Penyearah Setengah Gelombang) dan Full Wave Rectifier (Penyearah Gelombang Penuh).

Half Wave Rectifier (Penyearah Setengah Gelombang)

Half Wave Rectifier atau Penyearah Setengah Gelombang merupakan Penyearah yang paling sederhana karena hanya menggunakan 1 buah Dioda untuk menghambat sisi sinyal negatif dari gelombang AC dari Power supply dan melewatkan sisi sinyal Positif-nya.
Penyearah Setengah Gelombang (Half Wave Rectifier)
Pada prinsipnya, arus AC terdiri dari 2 sisi gelombang yakni sisi positif dan sisi negatif yang bolak-balik. Sisi Positif gelombang  dari arus AC yang masuk ke Dioda akan menyebabkan Dioda menjadi bias maju (Forward Bias) sehingga melewatkannya, sedangkan sisi Negatif gelombang arus AC yang masuk akan menjadikan Dioda dalam posisi Reverse Bias (Bias Terbalik) sehingga menghambat sinyal negatif tersebut.

Full Wave Rectifier (Penyearah Gelombang Penuh)

Terdapat 2 cara untuk membentuk Full Wave Rectifier atau Penyearah Gelombang Penuh. Kedua cara tersebut tetap menggunakan Dioda sebagai Penyearahnya namun dengan jumlah Dioda yang berbeda yaitu dengan menggunakan 2 Dioda dan 4 Dioda. Penyearah Gelombang Penuh dengan 2 Dioda harus menggunakan Transformer CT sedangkan Penyearah 4 Dioda tidak perlu menggunakan Transformer CT, Penyearah 4 Dioda sering disebut juga dengan Full Wave Bridge Rectifier.

Penyearah Gelombang Penuh 2 Dioda

Seperti yang dikatakan diatas, Penyearah Gelombong Penuh 2 Dioda memerlukan Transformer khusus yang dinamakan dengan Transformer CT (Centre Tapped). Transformer CT memberikan Output (Keluaran) Tegangan yang berbeda fasa 180° melalui kedua Terminal Output Sekundernya. Perbedaan Fase 180° tersebut dapat dilihat seperti pada gambar dibawah ini :
Penyearah Gelombang Penuh (Full Wave Rectifier) - 2 dioda
Di saat Output Transformer CT pada Terminal Pertama memberikan sinyal Positif pada D1, maka Terminal kedua pada Transformer CT akan memberikan sinyal Negatif (-) yang berbeda fasa 180° dengan Terminal Pertama. D1 yang mendapatkan sinyal Positif (+) akan berada dalam kondisi Forward Bias (Bias Maju) dan melewatkan sisi sinyal Positif (+) tersebut sedangkan D2 yang mendapatkan sinyal Negatif (-) akan berada dalam kondisi Reverse Bias (Bias Terbalik) sehingga menghambat sisi sinyal Negatifnya.
Sebaliknya, pada saat gelombang AC pada Terminal Pertama berubah menjadi sinyal Negatif maka D1 akan berada dalam kondisi Reverse Bias dan menghambatnya. Terminal Kedua yang berbeda fasa 180° akan berubah menjadi sinyal Positif sehingga D2 berubah menjadi kondisi Forward Bias yang melewatkan sisi sinyal Positif tersebut.

Penyearah Gelombang Penuh 4 Dioda (Bridge Rectifier)

Penyearah Gelombang Penuh dengan menggunakan 4 Dioda adalah jenis Rectifier yang paling sering digunakan dalam rangkaian Power Supply karena memberikan kinerja yang lebih baik dari jenis Penyearah lainnya. Penyearah Gelombang Penuh 4 Dioda ini juga sering disebut dengan Bridge Rectifier atau Penyearah Jembatan.
Penyearah Gelombang Penuh (Full Wave Rectifier)
Berdasarkan gambar diatas, jika Transformer mengeluarkan output sisi sinyal Positif (+) maka Output  maka D1 dan D2 akan berada dalam kondisi Forward Bias sehingga melewatkan sinyal Positif tersebut sedangakan D3 dan D4 akan menghambat sinyal sisi Negatifnya. Kemudian pada saat Output Transformer berubah menjadi sisi sinyal Negatif (-) maka D3 dan D4 akan berada dalam kondisi Forward Bias sehingga melewatkan sinyal sisi Positif (+) tersebut sedangkan D1 dan D2 akan menghambat sinyal Negatifnya.

 Penyearah Gelombang yang dilengkapi dengan Kapasitor

Tegangan yang dihasilkan oleh Rectifier belum benar-benar Rata seperti tegangan DC pada umumnya, oleh karena itu diperlukan Kapasitor yang berfungsi sebagai Filter (Penyaring) untuk menekan riple yang terjadi pada proses penyearahan Gelombang AC. Kapasitor yang umum dipakai adalah Kapasitor jenis ELCO (Electrolyte Capacitor).
Prinsip Dasar dan Pengertian Semikonduktor (Semiconductor)

Prinsip Dasar dan Pengertian Semikonduktor (Semiconductor)

7:15 AM 0
Pengertian SemikonduktorPrinsip Dasar dan Pengertian Semikonduktor – Kata “Semikonduktor” sangat identik dengan peralatan Elektronika yang kita pakai saat ini. Hampir setiap peralatan Eletronika canggih seperti Handphone, Komputer, Televisi, Kamera bahkan Lampu penerang LED juga merupakan hasil dari Teknologi Semikonduktor. Komponen-komponen penting yang membentuk sebuah Peralatan Elektronika seperti Transistor, Dioda dan Integrated Circuit (IC) adalah komponen elektronika aktif yang terbuat bahan semikonduktor. Oleh karena itu, bahan Semikonduktor memiliki pengaruh yang sangat besar terhadap perkembangan Teknologi Elektronika.
Bahan Semikonduktor (Semiconductor) adalah bahan penghantar listrik yang tidak sebaik Konduktor (conductor) akan tetapi tidak pula seburuk Insulator (Isolator) yang sama sekali tidak menghantarkan arus listrik. Pada dasarnya, kemampuan menghantar listrik Semikonduktor berada diantara Konduktor dan Insulator. Akan tetapi, Semikonduktor berbeda dengan Resistor, karena Semikonduktor dapat dapat menghantarkan listrik atau berfungsi sebagai Konduktor jika diberikan arus listrik tertentu, suhu tertentu dan juga tata cara atau persyaratan tertentu.

Proses Doping pada Semikonduktor

Sebenarnya banyak bahan-bahan dasar yang dapat digolongkan sebagai bahan Semikonduktor, tetapi yang paling sering digunakan untuk bahan dasar komponen elektronika hanya beberapa jenis saja, bahan-bahan Semikonduktor tersebut diantaranya adalah Silicon, Selenium, Germanium dan Metal Oxides. Untuk memproses bahan-bahan Semikonduktor tersebut menjadi komponen elektronika, perlu dilakukan proses “Doping” yaitu proses untuk menambahkan ketidakmurnian (Impurity) pada Semikonduktor yang murni (semikonduktor Intrinsik) sehingga dapat merubah sifat atau karakteristik kelistrikannya. Beberapa bahan yang digunakan untuk menambahkan ketidakmurnian semikonduktor antara lain adalah Arsenic, Indium dan Antimony. Bahan-bahan tersebut sering disebut dengan “Dopant”, sedangkan Semikonduktor yang telah melalui proses “Doping” disebut dengan Semikonduktor Ekstrinsik.

Tipe atau Jenis Semikonduktor

Semikonduktor yang telah dilalui proses Doping yaitu Semikonduktor yang Impurity (ketidakmurnian) atau Semikonduktor Ekstrinsik yang siap menjadi Komponen Elektronika dapat dibedakan menjadi 2 Jenis yaitu :

1. N-type Semikonduktor

Dikatakan N-type karena Semikonduktor jenis ini pembawa muatannya (Charge Carrier) adalah terdiri dari Elektron. Elektron adalah bermuatan Negatif sehingga disebut dengan Tipe Negatif atau N-type.
Pada Semikonduktor yang berbahan Silicon (Si), Proses Doping dengan menambahkan Arsenic atau Antimony akan menjadikan Semikonduktor tersebut sebagai N-type Semikonduktor.
Terdapat 2 (dua) pembawa muatan atau charge Carrier dalam N-type Semikonduktor yakni Elektron sebagai Majority Carrier dan Hole sebagai Minority Carrier.

2. P-Type Semikonduktor

Dikatakan P-type karena Semikonduktor jenis ini kekurangan Elektron atau disebut dengan “Hole”. Ketika pembawa muatannya adalah Hole maka Semikonduktor tersebut merupakan Semikonduktor bermuatan Positif.
Pada Semikonduktor yang berbahan Silicon (Si), Proses Doping dengan menambahkan Indium akan menjadikan Semikondukter tersebut sebagai P-type Semikonduktor.
2 (dua) pembawa muatan yang terdapat dalam P-type Semikonduktor adalah Hole sebagai Majority Carrier dan Elektron sebagai Minority Carrier).
Komponen-komponen Elektronika Aktif yang bahan dasarnya terbuat dari Semikonduktor diantaranya adalah :
  • Integrated Circuit
  • Transistor
  • Dioda
Komponen-komponen Elektronika yang terbuat dari Semikonduktor merupakan komponen Elektronika yang sangat sensitif dengan ESD (Electro Static Discharge). Oleh karena itu, perlu penanganan khusus dalam produksi terhadap Komponen-komponen tersebut.

Teori Semikonduktor

7:13 AM 0

Secara umum semikonduktor adalah bahan yang sifat-sifat kelistrikannya terletak an- tara sifat-sifat konduktor dan isolator. Operasi semua komponen benda padat seperti dioda, LED, Transistor Bipolar dan FET serta Op-Amp atau rangkaian terpadu lainnya (solid state) didasarkan atas sifat-sifat semikon- duktor. Sifat-sifat kelistrikan konduktor maupun isolator tidak mudah berubah oleh pengaruh temperatur, cahaya atau medan magnit, tetapi pada semikon- duktor sifat-sifat tersebut sangat sensitif.
Struktur Atom Silikon dan Germanium
Elemen terkecil dari suatu bahan yang masih memiliki sifat-sifat kimia dan fisika yang sama adalah atom. Suatu atom terdiri atas tiga partikel dasar, yaitu: neutron, proton, dan elek- tron. Dalam struktur atom, proton dan neutron membentuk inti atom yang bermuatan positip dan sedangkan elektron-elektron yang bermuatan negatip mengelilingi inti. Elektron-elektron ini tersusun berlapis-lapis. Struktur atom dengan model Bohr dari bahan semikonduktor yang paling banyak digunakan, silikon dan germanium, terlihat pada gambar 1.1.
Seperti ditunjukkan pada gambar 1.1 atom silikon mempunyai elektron yang mengor- bit (yang mengelilingi inti) sebanyak 14 dan atom germanium mempunyai 32 elektron. Pada atom yang seimbang (netral) jumlah elektron dalam orbit sama dengan jumlah proton dalam inti. Muatan listrik sebuah elektron adalah: - 1.602 pangkat -19 C dan muatan sebuah proton adalah: + 1.602 pangkat -19 C.
Elektron yang menempati lapisan terluar disebut sebagai elektron valensi. Atom sili- kon dan germanium masing-masing mempunyai empat elektron valensi. Oleh karena itu baik atom silikon maupun atom germanium disebut juga dengan atom tetra-valent (bervalensi em- pat). Empat elektron valensi tersebut terikat dalam struktur kisi-kisi, sehingga setiap elektron valensi akan membentuk ikatan kovalen dengan elektron valensi dari atom-atom yang berse- belahan. Struktur kisi-kisi kristal silikon murni dapat digambarkan secara dua dimensi guna memudahkan pembahasan. Lihat gambar 1.2.
Struktur kristal silikon denganan kovalen ikatan kovalen
Meskipun terikat dengan kuat dalam struktur kristal, namun bisa saja elektron valensi tersebut keluar dari ikatan kovalen menuju daerah konduksi apabila diberikan energi panas. Bila energi panas tersebut cukup kuat untuk memisahkan elektron dari ikatan kovalen maka elektron tersebut menjadi bebas atau disebut dengan elektron bebas. Pada suhu ruang terdapat kurang lebih 1.5 x 10 pangkat 10 elektron bebas dalam 1 cm3 kubik bahan silikon murni (intrinsik) dan 2.5 x 10 pangkat 13 elektron bebas pada germanium. Semakin besar energi panas yang diberikan semakin banyak jumlah elektron bebas yang keluar dari ikatan kovalen, dengan kata lain konduktivitas bahan meningkat.
Setiap elektron yang menempati suatu orbit tertentu dalam struktur atom tunggal (atau terisolasi) akan mempunyai level energi tertentu. Semakin jauh posisi orbit suatu elektron, maka semakin besar level energinya. Oleh karena itu elektron yang menduduki posisi orbit terluar dalam suatu struktur atom atau yang disebut dengan elektron valensi, akan mempunyai level energi terbesar. Sebaliknya elektron yang paling dekat dengan inti mempunyai level energi terkecil. Level energi dari atom tunggal dapat dilihat pada gambar 1.3.
Level Energi dari atom tunggal


  Di antara level energi individual yang dimiliki elektron pada orbit tertentu terdapat celah energi yang mana tidak dimungkinkan adanya elektron mengorbit.  Oleh karena itu celah ini disebut juga dengan daerah terlarang.  Suatu elektron tidak dapat mengorbit pada daerah terlarang, tetapi bisa melewatinya dengan cepat.  Misalnya bila suatu elektron pada orbit tertentu mendapatkan energi tambahan dari luar (seperti energi panas), sehingga level energi elektron tersebut bertambah besar, maka elektron akan meloncat ke orbit berikutnya yang lebih luar yakni dengan cepat melewati daerah terlarang.
Hal ini berlaku juga sebaliknya, yaitu apabila suatu elektron dipaksa kembali ke orbit yang lebih dalam, maka elektron akan mengeluarkan energi.  Dengan kata lain, elektron yang berpindah ke orbit lebih luar akan membutuhkan energi, sedangkan bila berpindah ke orbit lebih dalam akan mengeluarkan energi.
Besarnya energi dari suatu elektron dinyatakan dengan satuan elektron volt (eV).  Hal ini disebabkan karena definisi energi merupakan persamaan:

Persamaan Energi
 Dengan potensial listrik sebesar 1 V dan muatan elektron sebesar  1.602 pangkat -19 C, maka energi dari
sebuah elektron dapat dicari:
Hasil tersebut menunjukkan bahwa untuk memindahkan sebuah elektron melalui beda potensial sebesar 1 V diperlukan energi sebesar 1.602 pangkat -19 J.   Atau dengan kata lain:
 
 Bila atom-atom tunggal dalam suatu bahan saling berdekatan (dalam kenyatannya memang mesti demikian) sehingga membentuk suatu kisi-kisi kristal, maka atom-atom akan berinteraksi dengan mempunyai ikatan kovalen.  Karena setiap elektron valensi level energinya tidak tepat sama, maka level energi jutaan elektron valensi dari suatu bahan akan membentuk range energi atau yang disebut dengan pita energi valensi atau pita valensi.  Gambar 1.4 menunjukkan diagram pita energi dari bahan isolator, semikonduktor dan konduktor.  Suatu energi bila diberikan kepada elektron valensi, maka elektron tersebut akan meloncat keluar.  Oleh karena elektron valensi terletak pada orbit terluar dari struktur atom, maka elektron tersebut akan meloncat ke daerah pita konduksi.  Pita konduksi merupakan level energi dimana elektron terlepas dari ikatan inti atom atau menjadi elektron bebas.  Jarak energi antara pita valensi dan pita konduksi disebut dengan pita celah atau daerah terlarang.

Seberapa besar perbedaan energi, Eg, (jarak energi) antara pita valensi dan pita konduksi pada suatu bahan
akan menentukan apakah bahan tersebut termasuk isolator, semikonduktor atau konduktor. Eg adalah energi
yang diperlukan oleh elektron valensi untuk berpindah dari pita valensi ke pita konduksi.  Eg dinyatakan dalam satuan eV (elektron volt).  Semakin besar Eg, semakin besar energi yang dibutuhkan elektron valensi untuk berpindah ke pita konduksi.   
Pada bahan-bahan isolator jarak antara pita valensi dan pita konduksi (daerah terlarang) sangat jauh. Pada suhu ruang hanya ada sedikit sekali (atau tidak ada) elektron valensi  yang sampai keluar ke pita konduksi.  Sehingga pada bahan-bahan ini tidak dimungkinkan terjadinya aliran arus listrik.  Diperlukan Eg paling tidak 5 eV untuk mengeluarkan elektron valensi ke pita konduksi.  
 
gambar 1.4 Diagram pita energi (a) isolator;(b) semikonduktor dan (c) konduktor 
 Pada bahan semikonduktor lebar daerah terlarang relatif kecil.  Pada suhu mutlak 0 derajat Kelvin, tidak ada elektron valensi yang keluar ke pita konduksi, sehingga pada suhu ini bahan semikonduktor merupakan isolator yang baik.  Namun pada suhu ruang, energi panas mampu memindahkan sebagian elektron valensi ke pita konduksi (menjadi elektron bebas).  Pada bahan silikon dan germanium masing-masing Eg-nya adalah 1.1 eV dan 0.67 eV.
Tempat yang ditinggalkan elektron valensi ini disebut dengan hole.  Pada gambar 1.4 dilukiskan dengan lingkaran kosong.  Meskipun hole ini secara fisik adalah kosong, namun secara listrik bermuatan positip, karena ditinggalkan oleh elektron yang bermuatan negatip. Level energi suatu hole adalah terletak pada pita valensi, yaitu tempat asalnya elektron valensi. Apabila ada elektron valensi berpindah dan menempati suatu hole dari atom sebelahnya,maka hole menjadi tersisi dan tempat dari elektron yang berpindah tersebut menjadi kosong atau hole.  Dengan demikian arah gerakan hole (seolah-olah) berlawanan dengan arah gerakan elektron.
Sedangkan pada bahan konduktor pita valensi dan pita konduksi saling tumpang tindih. Elektron-elektron valensi sekaligus menempati pada pita konduksi. Oleh karena itu pada  bahan konduktor meskipun pada suhu 0 derajat K, cukup banyak elektron valensi yang berada di pita konduksi (elektron bebas).


 Sumber Pustaka
Boylestad and Nashelsky. (1992). Electronic Devices and Circuit Theory, 5th ed. Engelwood
         Cliffs, NJ: Prentice-Hall, Inc.
Floyd, T. (1991). Electric Circuits Fundamentals. New York: Merrill Publishing Co.
Malvino, A.P. (1993). Electronic Principles 5th Edition. Singapore: McGraw-Hill, Inc.
Milman & Halkias. (1972). Integrated Electronics: Analog and Digital Circuits and Systems.
        Tokyo: McGraw-Hill, Inc.
Savant, Roden, and Carpenter. (1987). Electronic Circuit Design: An Engineering Approach.
        Menlo Park, CA: The Benjamin/Cummings Publishing Company, Inc.
Stephen, F. (1990). Integrated devices: discrete and integrated. Englewood Cliffs, NJ: Pren-
        tice-Hall, Inc.

MENGENAL HALF ADDER DAN FULL ADDER

7:31 PM 1

TUJUAN :
  1. Agar mahasiswa mampu memahami cara kerja rangkaian half adder dan full adder
  2. Agar mahasiswa mampu membuat rangkaian half adder dan full adder dari rangkaian kombinasi gerbang logika dasar
PENGANTAR
Rangkaian Adder (penjumlah) adalah rangkaian elektronika digital yang digunakan untuk menjumlahkan dua buah angka (dalam sistem bilangan biner), sementara itu di dalam komputer rangkaian adder terdapat pada mikroprosesor dalam blok ALU (Arithmetic Logic Unit). Sistem bilangan yang digunakan dalam rangkaian adder adalah :
  • Sistem bilangan biner (memiliki base/radix 2)
  • Sistem bilangan oktal (memiliki base/radix 8)
  • Sistem bilangan Desimal (memiliki base/radix 10)
  • Sistem bilangan Hexadesimal (memiliki base/radix 16)

Namun, diantara ketiga sistem tersebut yang paling mendasar adalah sistem bilangan biner, sementara itu untuk menerapkan nilai negatif, maka digunakanlah sistem bilangan complement. BCD (binary-coded decimal).
Note!
Agar kalian bisa memahami konsep dasar rangkaian adder, maka kuasai terlebih dahulu teknik konversi antara sistem bilangan di atas, Silakan baca selengkapnya di sini :  

Perbincangan mengenai adder biasanya dimulai dari half-adder lalu-full adder setelah itu adalah ripple-carry-adder. 
Half-adder berdasarkan dua input, yaitu A dan B, maka outpunya adalah S(sum), S atau sum ini akan dihitung berdasarkan implementasi operasi logika XOR dari A dan B. Selain Output S(sum), masih ada lagi output lain yang kita kenal dengan C(carry), nah sedangkan output C(carry) ini dihasilkan dari implementasi operasi logika AND.
Prinsipnya adalah OUTPUT S itu menyatakan hasil penjumlahan input A dan B, sedangakan C adalah menyatakan MSB (most significant bit atau carry bit) dari penjumlahan tersebut.
Full-adder berdasarkan dua input seperti di atas (half-adder), maka prinsip kerjanya juga sama seperti half-adder, hanya saja Full-adder mampu menampung carry dari hasil penjumlahan sebelumnya. Sehingga dengan adanya carry tersebut, maka jumlah inputnya sewaktu-waktu bisa jadi 3 (tergantung kondisi carrynya, apakah aktif/tidak)
Langkah Praktikum
  1. Siapkan peralatan dan bahan yang dibutuhkan.
  2. Mengimplementasikan skema rangkaian yang akan diuji ke dalam project board dan pastikan semua sambungan dan pengkabelan baik dan benar.
  3. Sambungkan adaptor ke stop kontak, kemudian cek keluaran dari adaptor tersebut.
  4. Berikan input dengan logika 0 dengan cara menyambungkan input ke ground dan 1 dengan cara menyambungkan input ke catu daya positif (+5v) 
  5. Lakukan langkah 6 sesuai dengan kebutuhan tabel kebenaran.
  6. Amati perubahan LED dan catat hasilnya pada tabel hasil praktikum.
  7. Ulangi langkah 2 – 6 pada rangkaian praktikum yang lain.
  8. Selesai

PERCOBAAN I (Half Adder)























Tabel Kebenaran













Berikut adalah Demo Half Adder untuk mengetahui tabel kebenaran di atas :

Jika kalian ingin mempraktekan sendiri, silakan bisa download rangkaiannya di sini :

PERCOBAAN 2 (Full Adder)

















Tabel Kebenaran











KONVERSI BILANGAN BINER, OCTAL, DESIMAL, HEXADESIMAL

7:21 PM 0

Kali ini saya ingin memposting tentang cara konversi empat jenis bilangan yakni:
  • Bilangan biner (Bilangan berbasis dua, bilangannya: 0,1)
  • Bilangan octal (Bilangan berbasis delapan bilangannya: 0,1,2,3,4,5,6,7)
  • Bilangan desimal (Bilangan berbasis sepuluh, bilangannya: 0,1,2,3,4,5,6,7,8,9)
  • Bilangan hexadesimal (Bilangan berbasis enam belas, bilangannya: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
Untuk pengertian jenis-jenis bilangan bisa dibaca di post saya sebelumnya.

Konversi bilangan adalah proses mengubah bentuk bilangan satu ke bentuk bilangan lain yang memiliki nilai yang sama. Misal: nilai bilangan desimal 12 memiliki nilai yang sama dengan bilangan octal 15; Nilai bilangan biner 10100 memiliki nilai yang sama dengan 24 dalam octal dan seterusnya.

Mari kita mulai:



Konversi bilangan biner, octal atau hexadesimal menjadi bilangan desimal.
Konversi dari bilangan biner, octal atau hexa menjadi bilangan desimal memiliki konsep yang sama.Konsepnya adalah bilangan tersebut dikalikan basis bilangannya yang dipangkatkan 0,1,2 dst dimulai dari kanan. Untuk lebih jelasnya silakan lihat contoh konversi bilangan di bawah ini;
  • Konversi bilangan octal ke desimal.
    Cara mengkonversi bilangan octal ke desimal adalah dengan mengalikan satu-satu bilangan dengan 8 (basis octal) pangkat 0 atau 1 atau 2 dst dimulai dari bilangan paling kanan. Kemudian hasilnya dijumlahkan. Misal, 137(octal) = (7x80) + (3x81) + (1x82) = 7+24+64 = 95(desimal).
    Lihat gambar:
  • Konversi bilangan biner ke desimal.
    Cara mengkonversi bilangan biner ke desimal adalah dengan mengalikan satu-satu bilangan dengan 2 (basis biner) pangkat 0 atau 1 atau 2 dst dimulai dari bilangan paling kanan. Kemudian hasilnya dijumlahkan. Misal, 11001(biner) = (1x20) + (0x21) + (0x22) + (1x2) + (1x22) = 1+0+0+8+16 = 25(desimal).
  • Konversi bilangan hexadesimal ke desimal.
    Cara mengkonversi bilangan biner ke desimal adalah dengan mengalikan satu-satu bilangan dengan 16 (basis hexa) pangkat 0 atau 1 atau 2 dst dimulai dari bilangan paling kanan. Kemudian hasilnya dijumlahkan. Misal, 79AF(hexa) = (Fx20) + (9x21) + (Ax22) = 15+144+2560+28672 = 31391(desimal).
Konversi bilangan desimal menjadi bilangan biner, octal atau hexadesimal.
Konversi dari bilangan desimal menjadi biner, octal atau hexadesimal juga memiliki konse yang sama. Konsepnya bilangan desimal harus dibagi dengan basis bilangan tujuan, hasilnya dibulatkan kebawah dan sisa hasil baginya (remainder) disimpan. Ini dilakukan terus menerus hingga hasil bagi < basis bilangan tujuan. Sisa bagi ini kemudian diurutkan dari yang paling akhir hingga yang paling awal dan inilah yang merupakan hasil konversi bilangan tersebut. Untuk lebih jelasnya lihat pada contoh berikut;
  • Konversi bilangan desimal ke biner.
    Cara konversi bilangan desimal ke biner adalah dengan membagi bilangan desimal dengan 2 dan menyimpan sisa bagi per seitap pembagian terus hingga hasil baginya < 2. Hasil konversi adalah urutan sisa bagi dari yang paling akhir hingga paling awal. Contoh:

    125(desimal) = .... (biner)
    125/2 = 62 sisa bagi 1
    62/2= 31    sisa bagi 0
    31/2=15     sisa bagi 1
    15/2=7       sisa bagi 1
    7/2=3         sisa bagi 1
    3/2=1         sisa bagi 1

    hasil konversi: 1111101
    Lihat gambar:
  • Konversi bilangan desimal ke octal.
    Cara konversi bilangan desimal ke octal adalah dengan membagi bilangan desimal dengan 8 dan menyimpan sisa bagi per seitap pembagian terus hingga hasil baginya < 8. Hasil konversi adalah urutan sisa bagi dari yang paling akhir hingga paling awal. Contoh lihat gambar:
  • Konversi bilangan desimal ke hexadesimal.
    Cara konversi bilangan desimal ke octal adalah dengan membagi bilangan desimal dengan 16 dan menyimpan sisa bagi per seitap pembagian terus hingga hasil baginya < 16. Hasil konversi adalah urutan sisa bagi dari yang paling akhir hingga paling awal. Apabila sisa bagi diatas 9 maka angkanya diubah, untuk nilai 10 angkanya A, nilai 11 angkanya B, nilai 12 angkanya C, nilai 13 angkanya D, nilai 14 angkanya E, nilai 15 angkanya F. Contoh lihat gambar:

Konversi bilangan octal ke biner dan sebaliknya.

  • Konversi bilangan octal ke biner.
    Konversi bilangan octal ke biner caranya dengan memecah bilangan octal tersebut persatuan bilangan kemudian masing-masing diubah kebentuk biner tiga angka. Maksudnya misalkan kita mengkonversi nilai 2 binernya bukan 10 melainkan 010. Setelah itu hasil seluruhnya diurutkan kembali. Contoh:
  • Konversi bilangan biner ke octal.
    Konversi bilangan biner ke octal sebaliknya yakni dengan mengelompokkan angka biner menjadi tiga-tiga dimulai dari sebelah kanan kemudian masing-masing kelompok dikonversikan kedalam angka desimal dan hasilnya diurutkan. Contoh lihat gambar:

Konversi bilangan hexadesimal ke biner dan sebaliknya.
  • Konversi bilangan hexadesimal ke biner.
    Sama dengan cara konversi bilanga octal ke biner, bedanya kalau bilangan octal binernya harus 3 buah, bilangan desimal binernya 4 buah. Misal kita konversi 2 hexa menjadi biner hasilnya bukan 10 melainkan 0010. Contoh lihat gambar:
  • Konversi bilangan biner ke hexadesimal.
    Teknik yang sama pada konversi biner ke octal. Hanya saja pengelompokan binernya bukan tiga-tiga sebagaimana pada bilangan octal melainkan harus empat-empat. Contoh lihat gambar:
Konversi bilangan hexadesimal ke octal dan sebaliknya
  • Konversi bilangan octal ke hexadesimal.
    Teknik mengonversi bilangan octal ke hexa desimal adalah dengan mengubah bilangan octal menjadi biner kemudian mengubah binernya menjadi hexa. Ringkasnya octal->biner->hexa lihat contoh,
  • Konversi bilangan hexadesimal ke octal.Begitu juga dengan konversi hexa desimal ke octal yakni dengan mengubah bilangan hexa ke biner kemudian diubah menjadi bilangan octal. Ringkasnya hexa->biner->octal. Lihat contoh;
Diantara fungsi konversi bilangan diantaranya adalah untuk menghitung maksimum usable host pada blok IP address.
Pengertian Aljabar Boolean

Pengertian Aljabar Boolean

7:08 PM 0
Di sini, kita akan mempelajari tentang Materi Aljabar Boolean yang merupakan sebuah Mata Pelajaran Sistem Komputer Kelas 10 SMK. Kita akan mendefinisikan Pengertian Aljabar Boolean.

Pengertian Aljabar Boolean
Aljabar Boolean merupakam rumusan matematika untuk menjelaskan sebuah hubungan logika antara fungsi dan pensaklaran digital. Aljabar Boolean memiliki 2 macam nilai logika. Hanya bilangan biner yang terdiri atas angka 0 dan 1 maupun pernyataan rendah dan tinggi.
Suatu fungsi logika atau operasi logika yang dimaksud pada Aljabar Boolean merupakan suatu kombinasi Variabel Biner seperti misalnya yang terdapat pada masukan dan keluaran dari suatu rangkaian digital yang dapat ditunjukkan bahwa di dalam Aljabar Boolean semua hubungan logika antar variabel biner dapat dijelaskan oleh 3 operasi logika dasar, yaitu :
  1. Operasi NOT
  2. Operasi AND
  3. Operasi OR
Operasi tersbut dijabarkan dalam 3 bentuk, yaitu :
  1. Tabel fungsi (tabel kebenaran) yang menunjukkan keadaan semua variabel masukan dan keluaran untuk setiap kemungkinan.
  2. Simbol rangkaian untuk menjelaskan rangkaian digital.
  3. Persamaan fungsi
Operasi Logika Dasar dalam Aljabar Boolean
  • Operasi Logika NOT. Fungsi NOT adalah untuk membalik sebuah variabel biner, misal seperti jika masukannya 0, maka keluarannya adalah 1. Operasi NOT juga disebut sebagai Operasi Invers. Operasi Invers adalah operasi yang mengubah logika 1 menjadi 0.
  • Operasi Logika AND. Fungsi AND ialah untuk menghubungkan paling sedikit 2 masukan variabel dan dapat lebih variabel masukannya mulai x0, x1 sampai xn dan satu variabel keluaran y. Variabel keluaran akan berlogika 1 hanya jika semua masukannya x0, x1 sampai xn dalam keadaan 1.
  • Operasi Logika OR. Fungsi OR ialah menghubungkan paling sedikit 2 masukan variabel dan dapat lebih variabel masukannya mulai x0, x1 sampai xn dan satu variabel keluaran y. Variabel keluaran akan berlogika 0 hanya jika semua masukannya x0, x1 sampai xn dalam keadaan 0.
Motor Listrik

Motor Listrik

10:09 PM 3

Motor listrik merupakan sebuah perangkat elektromagnetis yang mengubah energi listrik menjadi energi mekanik. Energi mekanik ini digunakan untuk, misalnya, memutar impeller pompa, fan atau blower, menggerakan kompresor, mengangkat bahan, dan lain sebagainya. Motor listrik digunakan juga di rumah (mixer, bor listrik, fan atau kipas angin) dan di industri. Motor listrik dalam dunia industri seringkali disebut dengan istilah “kuda kerja” nya industri sebab diperkirakan bahwa motor-motor menggunakan sekitar 70% beban listrik total di industri.
 
 
Prinsip kerja motor listrik pada dasarnya sama untuk semua jenis motor secara umum :
  • Arus listrik dalam medan magnet akan memberikan gaya
  • ika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop, yaitu pada sudut kanan medan magnet, akan mendapatkan gaya pada arah yang berlawanan.
  • Pasangan gaya menghasilkan tenaga putar/ torque untuk memutar kumparan.
  • Motor-motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putaran yang lebih seragam dan medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan.
Dalam memahami sebuah motor, penting untuk mengerti apa yang dimaksud dengan beban motor listrik. Beban mengacu kepada keluaran tenaga putar/ torque sesuai dengan kecepatan yang diperlukan. Beban umumnya dapat dikategorikan kedalam tiga kelompok (BEE India, 2004) :
  • Beban torque konstan adalah beban dimana permintaan keluaran energinya bervariasi dengan kecepatan operasinya namun torque nya tidak bervariasi. Contoh beban dengan torque konstan adalah conveyors, rotary kilns, dan pompa displacement konstan.
  • Beban dengan variabel torque adalah beban dengan torque yang bervariasi dengan kecepatan operasi. Contoh beban dengan variabel torque adalah pompa sentrifugal dan fan (torque bervariasi sebagai kwadrat kecepatan).
  • Beban dengan energi konstan adalah beban dengan permintaan torque yang berubah dan berbanding terbalik dengan kecepatan. Contoh untuk beban dengan daya konstan adalah peralatan-peralatan mesin.
Prinsip kerja motor listrik dapat dijelaskan dengan lebih jelas melalui gambar berikut :
Prinsip Kerja Motor Listrik,jual motor listrik,harga motor listrikPrinsip kerja motor listrik

Jenis Jenis Motor Listrik

Pada dasarnya motor listrik terbagi menjadi 2 jenis yaitu motor listrik DC dan motor listrik AC. Kemudian dari jenis tersebut digolongkan menjadi beberapa klasifikasi lagi sesuai dengan karakteristiknya.
Jenis Jenis Motor ListrikJenis Jenis Motor Listrik
Dari gambar diatas terlihat jelas pengelompokan jenis-jenis motor listrik. Jenis-jenis motor listrik diatas akan diuraikan secara lebih lengkap dalam artikel motor listrik DC dan motor listrik AC.
 Teori Motor AC Dan Jenis Motor AC

Teori Motor AC Dan Jenis Motor AC

10:04 PM 1

Motor AC adalah jenis motor listrik yang bekerja menggunakan tegangan AC (Alternating Current). Motor AC memiliki dua buah bagian utama yaitu “stator” dan “rotor”. Stator merupakan komponen motor AC yang statis. Rotor merupakan komponen motor AC yang berputar. Motor AC dapat dilengkapi dengan penggerak frekuensi variabel untuk mengendalikan kecepatan sekaligus menurunkan konsumsi dayanya.

Jenis-Jenis Motor AC

Motor AC Sinkron (Motor Sinkron)

Motor sinkron adalah motor AC, bekerja pada kecepatan tetap pada sistim frekuensi tertentu. Motor ini memerlukan arus searah (DC) untuk pembangkitan daya dan memiliki torque awal yang rendah, dan oleh karena itu motor sinkron cocok untuk penggunaan awal dengan beban rendah, seperti kompresor udara, perubahan frekuensi dan generator motor. Motor sinkron mampu untuk memperbaiki faktor daya sistim, sehingga sering digunakan pada sistim yang menggunakan banyak listrik.
Motor AC SinkronMotor AC Sinkron
Komponen utama motor AC sinkron :
  • Rotor, Perbedaan utama antara motor sinkron dengan motor induksi adalah bahwa rotor mesin sinkron berjalan pada kecepatan yang sama dengan perputaran medan magnet. Hal ini memungkinkan sebab medan magnit rotor tidak lagi terinduksi. Rotor memiliki magnet permanen atau arus DC-excited, yang dipaksa untuk mengunci pada posisi tertentu bila dihadapkan dengan medan magnet lainnya.
  • Stator, Stator menghasilkan medan magnet berputar yang sebanding dengan frekuensi yang dipasok.
Motor ini berputar pada kecepatan sinkron, yang diberikan oleh persamaan berikut (Parekh, 2003):
Ns = 120 f / P
Dimana:
f = frekuensi dari pasokan frekuensi
P = jumlah kutub

Motor AC Induksi (Motor Induksi)

Motor induksi merupakan motor yang paling umum digunakan pada berbagai peralatan industri. Popularitasnya karena rancangannya yang sederhana, murah dan mudah didapat, dan dapat langsung disambungkan ke sumber daya AC.
Motor AC InduksiMotor AC Induksi

Komponen Utama Motor AC Induksi

Motor induksi memiliki dua komponen listrik utama :
Rotor, Motor induksi menggunakan dua jenis rotor :
  • Rotor kandang tupai terdiri dari batang penghantar tebal yang dilekatkan dalam petak-petak slots paralel. Batang-batang tersebut diberi hubungan pendek pada kedua ujungnya dengan alat cincin hubungan pendek.
  • Lingkaran rotor yang memiliki gulungan tiga fase, lapisan ganda dan terdistribusi. Dibuat melingkar sebanyak kutub stator. Tiga fase digulungi kawat pada bagian dalamnya dan ujung yang lainnya dihubungkan ke cincin kecil yang dipasang pada batang as dengan sikat yang menempel padanya.
Stator, Stator dibuat dari sejumlah stampings dengan slots untuk membawa gulungan tiga fase. Gulungan ini dilingkarkan untuk sejumlah kutub yang tertentu. Gulungan diberi spasi geometri sebesar 120 derajat.

Jenis-Jenis Motor Induksi

Motor induksi dapat diklasifikasikan menjadi dua kelompok utama (Parekh, 2003) :
  • Motor induksi satu fase. Motor ini hanya memiliki satu gulungan stator, beroperasi dengan pasokan daya satu fase, memiliki sebuah rotor kandang tupai, dan memerlukan sebuah alat untuk menghidupkan motornya. Sejauh ini motor ini merupakan jenis motor yang paling umum digunakan dalam peralatan rumah tangga, seperti fan angin, mesin cuci dan pengering pakaian, dan untuk penggunaan hingga 3 sampai 4 Hp.
  • Motor induksi tiga fase. Medan magnet yang berputar dihasilkan oleh pasokan tiga fase yang seimbang. Motor tersebut memiliki kemampuan daya yang tinggi, dapat memiliki kandang tupai atau gulungan rotor (walaupun 90% memiliki rotor kandang tupai); dan penyalaan sendiri. Diperkirakan bahwa sekitar 70% motor di industri menggunakan jenis ini, sebagai contoh, pompa, kompresor, belt conveyor, jaringan listrik , dan grinder. Tersedia dalam ukuran 1/3 hingga ratusan Hp.

Kecepatan Motor AC Induksi

Motor induksi bekerja sebagai berikut. Listrik dipasok ke stator yang akan menghasilkan medan magnet. Medan magnet ini bergerak dengan kecepatan sinkron disekitar rotor. Arus rotor menghasilkan medan magnet kedua, yang berusaha untuk melawan medan magnet stator, yang menyebabkan rotor berputar.
Walaupun begitu, didalam prakteknya motor tidak pernah bekerja pada kecepatan sinkron namun pada “kecepatan dasar” yang lebih rendah. Terjadinya perbedaan antara dua kecepatan tersebut disebabkan adanya “slip/geseran” yang meningkat dengan meningkatnya beban. Slip hanya terjadi pada motor induksi. Untuk menghindari slip dapat dipasang sebuah cincin geser/ slip ring, dan motor tersebut dinamakan “motor cincin geser/ slip ring motor”.
Persamaan berikut dapat digunakan untuk menghitung persentase slip/geseran (Parekh, 2003):
Kecepatan Motor AC InduksiDimana:
Ns = kecepatan sinkron dalam RPM
Nb = kecepatan dasar dalam RPM
Hubungan Antara Beban, Kecepatan dan Torque Pada Motor AC Induksi
Gambar dibawah menunjukan grafik perbandingan torque-kecepatan motor induksi AC tiga fase dengan arus yang sudah ditetapkan. Bila motor (Parekh, 2003) sebagai berikut :
  • Mulai menyala ternyata terdapat arus nyala awal yang tinggi dan torque yang rendah (“pull-up torque”).
  • Mencapai 80% kecepatan penuh, torque berada pada tingkat tertinggi (“pull-out torque”) dan arus mulai turun.
  • Pada kecepatan penuh, atau kecepatan sinkron, arus torque dan stator turun ke nol.
Grafik Torque-Kecepatan Motor Induksi ACGrafik Torque-Kecepatan Motor AC Induksi