Pengertian Osiloskop dan Spesifikasi penentu kinerjanya

Pengertian Osiloskop dan Spesifikasi penentu kinerjanya

9:28 PM 0
Pengertian Osiloskop dan Spesifikasi penentu kinerjanya
Pengertian Osiloskop dan Spesifikasi penentu kinerjanya – Osiloskop adalah alat ukur Elektronik yang dapat memetakan atau memproyeksikan sinyal listrik dan frekuensi menjadi gambar grafik agar dapat dibaca dan mudah dipelajari. Dengan menggunakan Osiloskop, kita dapat mengamati dan menganalisa bentuk gelombang dari sinyal listrik atau frekuensi dalam suatu rangkaian Elektronika. Pada umumnya osiloskop dapat menampilkan grafik Dua Dimensi (2D) dengan waktu pada sumbu X dan tegangan pada sumbu Y.
Osiloskop banyak digunakan pada industri-industri seperti penelitian, sains, engineering, medikal dan telekomunikasi. Saat ini, terdapat 2 jenis Osiloskop yaitu Osiloskop Analog yang menggunakan Teknologi CRT (Cathode Ray Tube) untuk menampilkan sinyal listriknya dan Osiloskop Digital yang menggunakan LCD untuk menampilkan sinyal listrik atau gelombong.

Karakteristik Pengukuran Osiloskop

Selain fitur-fitur dasarnya, kebanyakan Osiloskop juga dilengkapi dengan alat pengukuran yang dapat mengukur Frekuensi,   Amplitudo dan karakteristik gelombang sinyal listrik. Secara umum, Osiloskop dapat mengukur karakteristik yang berbasis Waktu (Time) dan juga karakteristik yang berbasis tegangan (Voltage).
Time vs Voltage Osiloskop

Karakteristik Berbasis Waktu (Time)

Frekuensi dan Periode – Frekuensi merupakan jumlah getaran yang dihasilkan selama 1 detik yang dinyatakan dengan Hertz. Sedangkan periode adalah kebalikan dari Frekuensi, yaitu waktu yang dibutuhkan untuk menempuh 1 kali getaran yang biasanya dilambangkan dengan t dengan satuan detik. Kemampuan Osiloskop dalam mengukur maksimum Frekuensi berbeda-beda tergantung pada tipe osiloskop yang digunakan. Ada yang dapat mengukur 100MHz, ada yang dapat mengukur 20MHz, ada yang hanya dapat mengukur 5MHz.
Duty Cycle (Siklus Kerja) –  Duty Cycle adalah perbandingan waktu ketika sinyal mencapai kondisi ON dan ketika mencapai kondisi OFF dalam satu periode sinyal. Dengan kata lain, Siklus Kerja atau Duty Cycle adalah perbandingan lama kondisi ON dan kondisi OFF suatu sinyal pada setiap periode.
Rise dan Fall Time – Rise Time adalah waktu perubahan sinyal (durasi) dari sinyal rendah ke sinyal tinggi, contoh dari 0V ke 5V. Sedangkan Fall Time adalah waktu perubahan sinyal (durasi) dari sinyal tinggi ke sinyal rendah, contohnya perubahan dari 5V ke 0V. Karakteristik ini sangat penting dalam mengukur respon suatu rangkaian terhadap sinyalnya.

Karakteristik Berbasis Tegangan (Voltage)

Amplitudo –  Amplitudo adalah ukuran besarnya suatu sinyal atau biasanya disebut dengan tingginya puncak gelombang. Terdapat beberapa cara dalam pengukuran Amplitudo yang diantaranya adalah pengukuran dari Puncak tertinggi ke Puncak terendah (Vpp), ada juga yang mengukur salah satu puncaknya saja baik yang tertinggi maupun yang terendah dengan sumbu X atau 0V.
Tegangan Maksimum dan Minimum –  Osiloskop dapat dengan mudah menampilkan Tegangan Maksimum dan Minumum suatu rangkaian Elektronika.
Tegangan Rata-rata –  Osiloskop dapat melakukan perhitungan terhadap tegangan sinyal yang diterimanya dan menampilkan hasil tegangan rata-rata sinyal tersebut.

Kinerja dan Spesifikasi Osiloskop

Tidak Semua Osiloskop memiliki kinerja yang sama, hal ini tergantung oleh spesifikasi pada Osiloskop tersebut. Beberapa spesifikasi penting pada Osiloskop yang menentukan kinerja Osiloskop diantaranya seperti dibawah ini :
Bandwidth (Lebar Pita) – Bandwith menentukan rentang frekuensi yang dapat diukur oleh Osiloskop. Contohnya 100MHz, 20MHz atau 10MHz
Digital atau Analog – Osiloskop dapat digolongkan menjadi 2 jenis yaitu Osiloskop Analog dan Osiloskop Digital. Osiloskop Analog menggunakan Tegangan yang diukur untuk menggerak berkas elektron dalam tabung gambar untuk menampilkan bentuk gelombang yang diukurnya. Sedangkan Osiloskop Digital menggunakan Analog to Digital Converter (ADC) untuk mengubah besaran tegangan menjadi besaran digital. Pada umumnya, Osiloskop Analog memiliki lebar pita atau bandwidth yang lebih rendah, fitur lebih sedikit dibandingkan dengan Osiloskop Digital, namun osiloskop Analog memiliki respon yang lebih cepat.
Jumlah Channel (Kanal) – Osiloskop yang dapat membaca lebih dari satu sinyal dalam waktu yang sama dan menampilkannya di layar secara simultan. Kemampuan tersebut tergantung pada jumlah kanal yang dimilikinya. Pada umumnya, Osiloskop yang ditemukan di pasaran memiliki 2 atau 4 kanal.
Sampling Rate – Sampling Rate hanya untuk Osiloskop Digital yaitu berapa kali sinyal itu dibaca dalam satu detik.
Rise Time – Spesifikasi Rise Time pada Osiloskop menunjukan seberapa cepat Osiloskop tersebut mengukur perubahan sinyal naik dari yang terendah ke yang tertinggi.
Maximum Input Voltage –  Setiap peralatan elektronik memiliki batas tegangan Inputnya, tak terkecuali Osiloskop. Jika sinyal melebihi batas tegangan yang ditentukan, Osiloskop tersebut akan menjadi rusak karenanya.
Vertical Sensitivity (Sensitivitas Vertikal) – Nilai Vertical Sensitivity menunjukan kemampuan penguatan vertikal untuk memperkuat sinyal lemah pada Osiloskop. Vertical Sensitivity ini diukur dengan satuan Volt per div.
Time Base – Time Base menunjukan kisaran Sensitivitas pada Horisontal atau Sumbu Waktu. Nilai Time base diukur dengan satuan second  per div.
Input Impedance – Impedansi Input digunakan pada saat pengukuran Frekuensi tinggi. Kita juga dapat menggunakan Probe Osiloskop untuk kompensasi Impedansi yang kurang
Mengenal Kode-kode Transistor dan Dioda

Mengenal Kode-kode Transistor dan Dioda

9:26 PM 0
Mengenal Kode Transistor dan Dioda (Semikonduktor)
Mengenal Kode-kode Transistor dan Dioda – Transistor dan Dioda merupakan komponen Elektronika Aktif yang terbuat dari bahan Semikonduktor dan masing-masing Transistor maupun Dioda memiliki karakteriktik yang berbeda-beda tergantung pada tipe dan kegunaannya. Di pasaran, terdapat ribuan tipe Transistor dan Dioda yang dirancang khusus untuk keperluan tertentu. Seperti Transistor yang dirancang khusus untuk Penguat daya, Transistor untuk saklar dan Transistor untuk Penggerak (Driver), ada juga yang dirancang khusus untuk rangkaian yang konsumsi daya rendah ataupun dirancang untuk aplikasi frekuensi tertentu.

Sistem Pengkodean Transistor

Pada dasarnya, kita dapat mengetahui bahan dasar sebuah Transistor/Dioda dan kegunaannya dari kode Transistor tersebut. Sistem pengkodean Transistor dan Dioda pada umumnya terdiri dari 3 jenis, yaitu sistem pengkodean Pro-Electron yang dipakai oleh produsen Eropa dan sistem pengkodean JEDEC yang digunakan oleh produsen Amerika Utara serta sistem pengkodean JIS yang umumnya digunakan oleh produsen Jepang.

Sistem Pengkodean JEDEC

JEDEC adalah singkatan dari Joint Electron Devie Engineering Council, Sistem pengkodean Transistor JEDEC ini berasal dari Amerika Utara sehingga banyak digunakan oleh produsen-produsen Transistor/Dioda yang berasal dari Amerika Utara seperti Amerika Serikat dan Kanada. Sistem pengkodean JEDEC ini memberikan informasi yang sangat sedikit terhadap karakteristik maupun parameter Transistor dan Dioda yang bersangkutan.
Format sistem pengkodean JEDEC adalah sebagai berikut :
Angka, Huruf, Nomor Seri
AngkaHurufNomor Seri
1 = DiodaNNomor Seri Transistor atau Dioda yang bersangkutan
2 = Transistor
3 = FET
Contoh :
1N4148 adalah Dioda, sedangkan 2N706 adalah Transistor.

Sistem Pengkodean Pro-Electron

Sistem Pengkodean Pro-Electron merupakan sistem Pengkodean yang berasal dari Eropa sehingga sering disebut juga dengan sistem pengkodean Eropa. Produsen-produsen transistor dan dioda Eropa pada umumnya menggunakan sistem pengkodean ini.
Format sistem pengkodean Pro-Electron adalah sebagai berikut :
Huruf, Huruf, Nomor Seri
Huruf Pertama adalah bahan Semikonduktornya
A = Germanium (Ge)
B = Silikon (Si)
C = Gallium Arsenide (GaAs)
Huruf kedua adalah tipe ataupun aplikasi komponen tersebut.
A = Dioda, Daya atau Sinyal Rendah
B = Dioda, Varicap (Variable Capacitane)
C = Transistor, Frekuensi Audio, Daya rendah
D = Transistor, Frekuensi Audio, Daya tinggi
E = Dioda, Tunnel Diode
F = Transistor, Frekuensi Tinggi, daya rendah
G = Transistor, ragam keperluan
H = Dioda, peka terhadap Magnetik/sensor
L = Transistor, Frekuensi Tinggi, daya tinggi
N = Photocoupler
P = Light Detector (Photo Dioda, Photo Transistor)
Q = Light Emitter
R = Piranti Kemudi dan Saklar, daya rendah (Thrystor, Diac)
S = Transistor Saklar daya rendah
T = Piranti Kemudi dan Saklar, daya rendah (Thrystor, Diac)
U = Transistor Saklar daya tinggi
W = Piranti Surface acoustic wave
X = Dioda Pengganda (Multiplier Diode)
Y = Dioda Penyearah (Rectifier Diode)
Z = Dioda, Voltage reference (Pereferensi Tegangan)
Contoh :
BC107 menandakan Transistor untuk Frekuensi Audio daya rendah yang terbuat dari bahan Silikon.

Sistem Pengkodean JIS

JIS adalah singkatan dari Japan Industrial Standard, Sistem Pengkodean Transistor JIS ini adalah sistem pengkodean yang digunakan oleh produsen Jepang.
Format sistem pengkodean JIS adalah sebagai berikut :
Angka, dua huruf, nomor seri
Arti dari dua huruf ini diantaranya adalah :
SA = Transistor PNP, Frekuensi tinggi
SB = Transistor PNP, Frekuensi audio
SC = Transistor NPN, Frekuensi tinggi
SD = Transistor NPN, Frekuensi audio
SE = Dioda
SF = Thrystor
SG = Dioda Gunn
SH = UJT
SJ = P-channel FET/MOSFET
SK = N-channel FET/MOSFET
SM = TRIAC
SQ = LED
SR = Rectifier
SS = Signal Diode
ST = Avalanche Diode
SV = Varicap
SZ = Dioda Zener
Contoh :
2SC1815 adalah Transistor NPN yang berfrekuensi tinggi, 2SB646 adalah Transistor PNP untuk frekuensi audio.  Ada juga produsen yang mencetak kode Transistor tanpa menampilkan dua karakter pertama seperti Transistor 2SC1815 menjadi C1815.
Pengertian Dioda Varactor (Varicap) dan Prinsip Kerjanya

Pengertian Dioda Varactor (Varicap) dan Prinsip Kerjanya

9:23 PM 0


Pengertian Dioda Varactor (Varicap) dan Prinsip Kerjanya – Dioda Varactor adalah Dioda yang mempunyai sifat kapasitas berubah-ubah sesuai dengan tegangan yang diberikannya. Sesuai dengan sifatnya ini, Dioda Varactor juga disebut dengan Dioda Kapasitas Variabel atau Varicap Diode (Variable Capacitance Diode).  Dioda Varactor pada umumnya digunakan pada rangkaian yang berkaitan dengan Frekuensi seperti pada rangkaian VCO (Voltage Controlled Oscillator), VFO (Variable Frequency Oscillator), RF Filter (Tapis Frekuensi Radio), PLL Oscilator (Phase-Locked Loop Oscillator), Tuner Radio dan Tuner Televisi. Rangkaian-rangkaian Elektronika ini dapat ditemukan pada perangkat-perangkat Elektronika seperti Ponsel, Radio Penerima, Radio Pemancar dan Televisi.
Dioda Varactor pertama kali dikembangkan oleh Pacific Semiconductor yaitu sebuah anak perusahaan dari Ramo Wooldridge Corporation yang memperoleh hak paten Dioda Varaktor pada tahun 1961.

Prinsip Kerja Dioda Varactor

Dioda Varactor pada umumnya terbuat dari bahan Semikonduktor Silikon dengan Sambungan PN yang dirancang khusus untuk memiliki sifat kapasitansi pada rangkaian bias balik (reverse bias) seperti Dioda Zener.
Dalam penggunaannya, Terminal Katoda Dioda Varactor akan dihubungkan ke tegangan positif (+) sedangkan terminal Anoda-nya dihubungkan ke tegangan negatif (-). Jika terjadi perubahan beda potensial diantara terminal Katoda dan Anoda yang melebihi breakdown atau tegangan tembus Dioda Varactor,  maka daerah deplesi pada sambungan semikonduktor tipe P dan tipe N dalam Dioda Varaktor tersebut akan terjadi perubahan lebar. Semakin tinggi tegangan terbalik (Reverse Bias) yang diberikan pada Dioda Varaktor, semakin lebar pula daerah deplesi  pada sambungan semikonduktor tersebut yang mengakibatkan semakin rendahnya nilai kapasitansi. Sebaliknya, jika Dioda Varaktor menerima tegangan terbalik atau reverse bias yang rendah, maka deplesi akan menyempit sehingga nilai kapasitansi menjadi lebih tinggi.

Bentuk, Simbol dan Grafik Karakteristik Dioda Varactor

Seperti fungsi dan karakteristiknya, simbol Dioda Varactor atau Dioda Varicap ini dilambangkan dengan sebuah Dioda yang ujungnya ditambahkan simbol Kapasitor. Dibawah ini adalah gambar bentuk, simbol dan grafik karakteristik Dioda Varactor (Varicap).
Pengertian Dioda Varactor dan Prinsip Kerja Dioda Varactor (Varicap)

Spesifikasi Dioda Varactor

Dalam memilih Dioda Varactor (Varikap), beberapa spesifikasi Dioda Varactor yang harus diperhatikan adalah :
  • Minimum Voltage Breakdown (contoh : 12V, 14V, 25V, 30V)
  • Power Dissipation (contoh : 225mW, 300mW, 330mW)
  • Nominal Kapasitansi Dioda Varactor (contoh : 2.8pF, 22pF, 33pF, 47pF, 100pF)
  • Maximum Peak Current (contoh : 4mA, 300mA, 500mA, 1A)
Pengertian Photo Transistor dan Prinsip kerjanya

Pengertian Photo Transistor dan Prinsip kerjanya

9:19 PM 0

Struktur Photo Transistor

Photo Transistor dirancang khusus untuk aplikasi pendeteksian cahaya sehingga memiliki Wilayah Basis dan Kolektor yang lebih besar dibanding dengan Transistor normal umumnya. Bahan Dasar Photo Transistor pada awalnya terbuat dari bahan semikonduktor seperti Silikon dan Germanium yang membentuk struktur Homo-junction.
Namun seiring dengan perkembangannya, Photo Transistor saat ini lebih banyak menggunakan bahan semikonduktor seperti Galium Arsenide yang tergolong dalam kelompok Semikonduktor III-V sehingga membentuk struktur Hetero-junction yang memberikan efisiensi konversi lebih tinggi. Yang dimaksud dengan Hetero-junction atau Heterostructure adalah Struktur yang menggunakan bahan yang berbeda pada kedua sisi persimpangan PN.
Struktur Phototransistor (Homojunction dan Heterojunction)
Photo Transistor pada umumnya dikemas dalam bentuk transparan pada area dimana Photo Transistor tersebut menerima cahaya.

Bentuk dan Simbol Photo Transistor

Photo Transistor pada umumnya dikemas dalam bentuk transparan pada area dimana Photo Transistor tersebut menerima cahaya.   Berikut ini adalah bentuk dan simbol Photo Transistor (Transistor Foto).
Pengertian Photo Transistor dan Prinsip Kerjanya

Prinsip Kerja Photo Transistor

Cara kerja Photo Transistor atau Transistor Foto hampir sama dengan Transistor normal pada umumnya, dimana arus pada Basis Transistor dikalikan untuk memberikan arus pada Kolektor. Namun khusus untuk Photo Transistor, arus Basis dikendalikan oleh jumlah cahaya atau inframerah yang diterimanya. Oleh karena itu, pada umumnya secara fisik Photo Transistor hanya memiliki dua kaki yaitu Kolektor dan Emitor sedangkan terminal Basisnya berbentuk lensa yang berfungsi sebagai sensor pendeteksi cahaya.
Pada prinsipnya, apabila Terminal Basis pada Photo Transistor menerima intensitas cahaya yang tinggi, maka arus yang mengalir dari Kolektor ke Emitor akan semakin besar.

Kelebihan dan Kelemahan Phototransistor

Meskipun Phototransistor memiliki berbagai kelebihan, namun bukan juga tanpa kelemahan. Berikut ini adalah beberapa Kelebihan dan kelemahan Phototransistor :

Kelebihan Photo Transistor

  • Photo Transistor menghasilkan arus yang lebih tinggi jika dibandingkan dengan Photo Diode.
  • Photo Transistor relatif lebih murah, lebih sederhana dan lebih kecil sehingga mudah untuk diintegrasikan ke berbagai rangkaian elektronika.
  • Photo Transistor memiliki respon yang cepat dan mampu menghasilkan Output yang hampir mendekati instan.
  • Photo Transistor dapat menghasilkan Tegangan, sedangkan Photoresistor tidak bisa.

Kelemahan Photo Transistor

  • Photo Transistor yang terbuat dari Silikon tidak dapat menangani tegangan yang melebihi 1000Volt
  • Photo Transistor sangat rentan terhadap lonjakan listrik yang mendadak (electric surge).
  • Photo Transistor tidak memungkin elektron bergerak sebebas perangkat lainnya (contoh: Tabung Elektron).
Tiga Jenis Konfigurasi Transistor Bipolar

Tiga Jenis Konfigurasi Transistor Bipolar

9:15 PM 0

Tiga Konfigurasi Transistor

Berikut ini adalah ketiga konfigurasi Transistor yang dimaksud.
3 Konfigurasi Transistor bipolar

Konfigurasi Common Base (Basis Bersama)

Seperti namanya, yang dimaksud dengan Konfigurasi Common Base (CB) atau Basis Bersama adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”.
Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (Kolektor Bersama)

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan.
Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.
Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (Emitor Bersama)

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output.
Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.
Hambatan – Resistensi adalah | Pengertian dan Definisi

Hambatan – Resistensi adalah | Pengertian dan Definisi

6:28 AM 0

Hambatan atau Resistensi adalah kemampuan suatu benda untuk menahan aliran arus listrik. Dalam suatu sirkuit, arus listrik dari power suplay tidak sepenuhnya dapat digunakan secara bebas. Terkadang arus listrik tersebut harus di hambat untuk memperoleh efek tertentu pada sirkuit. Dalam suatu hambatan atom-atom nya akan bertumbukan dengan elektron-elektron sehingga laju dan kecepatan elektron menjadi berkurang. Karena kuat arus biasanya di hitung berdasarkan banyak dan kecepatan elektronnya, maka ketika jumlah elekron dan kecepatannya berkurang otomatis berkurang pula kekuatan arus yang mengalir dalam suatu hambatan.

Setiap Konduktor mempunyai hambatan. Ketebalan suatu konduktor menentukan besar-kecilnya hambatan yang dimilikinya. Konduktor yang tebal memiliki hambatan yang kecil. Kawat yang tebal mempunyai penampang lintang yang lebih lebar, sehingga mengandung lebih banyak elektron. Sebaliknya, konduktor yang panjang, memiliki hambatan yang besar. Ini dikarenakan semakin panjang suatu konduktor semakin banyak pula atom-atom yang akan menghadang gerak elektron bebasnya sehingga arus listrik yang dialirkan akan berkurang.
Alat yang digunakan untuk menghambat arus listrik disebut resistor. Resistor adalah komponen didalam sirkuit listrik yang berfungsi untuk menahan arus dalam jumlah tertentu. Satuan hambatan atau resistensi dinyatakan dengan Ohm. Angka hambatan dalam sirkuit listrik adalah ketika tegangan membuat arus mengalir artinya hambatan adalah hasil dari tegangan dibagi arus. Untuk mengetahui lebih detail tentang hubungan arus, tegangan dan hambatan silah baca artikel tentang Hukum Ohm.
Prinsip Dasar dan Pengertian Semikonduktor (Semiconductor)

Prinsip Dasar dan Pengertian Semikonduktor (Semiconductor)

1:20 AM 1
Pengertian SemikonduktorPrinsip Dasar dan Pengertian Semikonduktor – Kata “Semikonduktor” sangat identik dengan peralatan Elektronika yang kita pakai saat ini. Hampir setiap peralatan Eletronika canggih seperti Handphone, Komputer, Televisi, Kamera bahkan Lampu penerang LED juga merupakan hasil dari Teknologi Semikonduktor. Komponen-komponen penting yang membentuk sebuah Peralatan Elektronika seperti Transistor, Dioda dan Integrated Circuit (IC) adalah komponen elektronika aktif yang terbuat bahan semikonduktor. Oleh karena itu, bahan Semikonduktor memiliki pengaruh yang sangat besar terhadap perkembangan Teknologi Elektronika.
Bahan Semikonduktor (Semiconductor) adalah bahan penghantar listrik yang tidak sebaik Konduktor (conductor) akan tetapi tidak pula seburuk Insulator (Isolator) yang sama sekali tidak menghantarkan arus listrik. Pada dasarnya, kemampuan menghantar listrik Semikonduktor berada diantara Konduktor dan Insulator. Akan tetapi, Semikonduktor berbeda dengan Resistor, karena Semikonduktor dapat dapat menghantarkan listrik atau berfungsi sebagai Konduktor jika diberikan arus listrik tertentu, suhu tertentu dan juga tata cara atau persyaratan tertentu.

Proses Doping pada Semikonduktor

Sebenarnya banyak bahan-bahan dasar yang dapat digolongkan sebagai bahan Semikonduktor, tetapi yang paling sering digunakan untuk bahan dasar komponen elektronika hanya beberapa jenis saja, bahan-bahan Semikonduktor tersebut diantaranya adalah Silicon, Selenium, Germanium dan Metal Oxides. Untuk memproses bahan-bahan Semikonduktor tersebut menjadi komponen elektronika, perlu dilakukan proses “Doping” yaitu proses untuk menambahkan ketidakmurnian (Impurity) pada Semikonduktor yang murni (semikonduktor Intrinsik) sehingga dapat merubah sifat atau karakteristik kelistrikannya. Beberapa bahan yang digunakan untuk menambahkan ketidakmurnian semikonduktor antara lain adalah Arsenic, Indium dan Antimony. Bahan-bahan tersebut sering disebut dengan “Dopant”, sedangkan Semikonduktor yang telah melalui proses “Doping” disebut dengan Semikonduktor Ekstrinsik.

Tipe atau Jenis Semikonduktor

Semikonduktor yang telah dilalui proses Doping yaitu Semikonduktor yang Impurity (ketidakmurnian) atau Semikonduktor Ekstrinsik yang siap menjadi Komponen Elektronika dapat dibedakan menjadi 2 Jenis yaitu :

1. N-type Semikonduktor

Dikatakan N-type karena Semikonduktor jenis ini pembawa muatannya (Charge Carrier) adalah terdiri dari Elektron. Elektron adalah bermuatan Negatif sehingga disebut dengan Tipe Negatif atau N-type.
Pada Semikonduktor yang berbahan Silicon (Si), Proses Doping dengan menambahkan Arsenic atau Antimony akan menjadikan Semikonduktor tersebut sebagai N-type Semikonduktor.
Terdapat 2 (dua) pembawa muatan atau charge Carrier dalam N-type Semikonduktor yakni Elektron sebagai Majority Carrier dan Hole sebagai Minority Carrier.

2. P-Type Semikonduktor

Dikatakan P-type karena Semikonduktor jenis ini kekurangan Elektron atau disebut dengan “Hole”. Ketika pembawa muatannya adalah Hole maka Semikonduktor tersebut merupakan Semikonduktor bermuatan Positif.
Pada Semikonduktor yang berbahan Silicon (Si), Proses Doping dengan menambahkan Indium akan menjadikan Semikondukter tersebut sebagai P-type Semikonduktor.
2 (dua) pembawa muatan yang terdapat dalam P-type Semikonduktor adalah Hole sebagai Majority Carrier dan Elektron sebagai Minority Carrier).
Komponen-komponen Elektronika Aktif yang bahan dasarnya terbuat dari Semikonduktor diantaranya adalah :
  • Integrated Circuit
  • Transistor
  • Dioda
Komponen-komponen Elektronika yang terbuat dari Semikonduktor merupakan komponen Elektronika yang sangat sensitif dengan ESD (Electro Static Discharge). Oleh karena itu, perlu penanganan khusus dalam produksi terhadap Komponen-komponen tersebut.
Rangkaian Seri dan Paralel Baterai

Rangkaian Seri dan Paralel Baterai

1:16 AM 0
Rangkaian Seri dan Paralel Baterai
Rangkaian Seri dan Paralel Baterai – Hampir semua peralatan Elektronika portable menggunakan Baterai sebagai sumber dayanya. Untuk mendapatkan tegangan yang diinginkan, biasanya kita merangkai Baterai dalam bentuk Rangkaian Seri. Contoh Rangkaian Seri Baterai yang paling sering ditemukan adalah penggunaan Baterai dalam Lampu Senter dan Remote Control Televisi. Biasanya kita akan menemui instruksi dari peralatan tersebut untuk memasukan 2 buah baterai atau lebih dengan arah Baterai yang ditentukan agar dapat menghidupkan peralatan yang bersangkutan. Rangkaian Baterai tersebut umumnya adalah Rangkaian Seri Baterai.
Pada dasarnya, Baterai dapat dirangkai secara Seri maupun Paralel. Tetapi hasil Output dari kedua Rangkaian tersebut akan berbeda. Rangkaian Seri Baterai akan meningkatkan Tegangan (Voltage) Output Baterai sedangkan Current/Arus Listriknya (Ampere) akan tetap sama. Hal ini Berbeda dengan Rangkaian Paralel Baterai yang akan meningkatkan Current/Arus Listrik (Ampere) tetapi Tegangan (Voltage) Outputnya akan tetap sama. Untuk lebih jelas, mari kita melihat Rangkaian Seri dan Paralel Baterai di bawah ini :

Rangkaian Seri Baterai

Rangkaian Seri Baterai Dari Gambar Rangkaian Seri Baterai diatas, 4 buah baterai masing-masing menghasilkan Current atau kapasitas arus listrik (Ampere) yang sama seperti Arus Listrik pada 1 buah baterai, tetapi Tegangannya yang dihasilkan menjadi 4 kali lipat dari Tegangan 1 buah baterai. Yang dimaksud dengan Tegangan dalam Elektronika adalah perbedaan potensial listrik antara dua titik dalam Rangkaian Listrik yang dinyatakan dengan satuan VOLT.
Seperti yang digambarkan pada Rangkaian Seri Baterai diatas, 4 buah Baterai yang masing-masing bertegangan 1,5 Volt dan 1.000 miliampere per jam (mAh) akan menghasilkan 6 Volt Tegangan  tetapi kapasitas arus Listriknya (Current) akan tetap yaitu 1.000 miliampere per jam (mAh).
Vtot = Vbat1 +Vbat2 + Vbat3 + Vbat4
Vtot = 1,5V + 1,5V + 1,5V + 1,5V
Vtot = 6 V
Rangkaian Seri Baterai : Meningkatkan Voltage

Rangkaian Paralel Baterai

Rangkaian Paralel Baterai Gambar yang kedua merupakan Rangkaian Paralel yang terdiri dari 4 buah Baterai. Tegangan yang dihasilkan dari Rangkaian Paralel adalah sama yaitu 1,5 Volt tetapi Current atau kapasitas arus listrik yang dihasilkan adalah 4.000 mAH (miliampere per Jam) yaitu total dari semua kapasitas arus listrik pada Baterai.
Itot = Ibat1 +Ibat2 + Ibat3 + Ibat4
Itot = 1.000mAh + 1.000mAh + 1.000mAh + 1.000mAh
Itot = 4.000mAh
Rangkaian Paralel Baterai : Meningkatkan Ampere

Arti mAh pada Baterai

Kapasitas sebuah Baterai biasanya diukur dengan satu mAh. Jadi apa yang dimaksud dengan mAH ini ? mAH adalah singkatan dari mili ampere Hour atau miliamper per Jam. Makin tinggi mAH-nya makin tinggi pula kapasitasnya. Pada dasarnya mAH (miliampere Hours) dalam Baterai menyatakan kemampuan Baterai dalam menyediakan energinya selama satu jam.
Contoh :
Sebuah peralatan Elektronik yang digunakan memerlukan 100mA setiap jamnya. Jika kita memakai Baterai yang memiliki kapasitas 1.000mAH maka Baterai tersebut mampu menyediakan energi untuk peralatan Elektronik tersebut selama 10 Jam. Jika kita menghubungkan 4 buah Baterai 1.000mAH secara paralel yang dapat menghasilkan 4.000mAH maka gabungan paralel 4 buah Baterai ini akan mampu menyediakan energi kepada peralatan Elektronik tersebut selama 40 jam.
Pengertian Spektrum Frekuensi Radio dan Pengalokasiannya

Pengertian Spektrum Frekuensi Radio dan Pengalokasiannya

1:01 AM 0
Spektrum Frekuensi Radio
Pengertian Spektrum Frekuensi Radio dan Pengalokasiannya – Dalam kehidupan sehari-hari, kita sering mendengar adanya Radio FM, Radio AM, Frekuensi VHF Televisi maupun Frekuensi UHF Televisi. Jadi apa yang dimaksud dengan nama-nama tersebut dan apa yang membedakannya? Berikut ini adalah pembahasan singkat dari Spektrum Frekuensi Radio beserta pengalokasian Frekuensi berdasarkan penggunaanya.
Yang dimaksud dengan Gelombang Radio adalah Gelombang Elektromagnetik yang disebarkan melalui Antena. Gelombang Radio memiliki Frekuensi yang berbeda-beda sehingga memerlukan penyetelan Frekuensi tertentu yang cocok pada Radio Receiver (Penerima Radio) untuk mendapatkan sinyal tersebut.  Frekuensi Radio (RF) berkisar diantara 3 kHz sampai 300 GHz.
Pada Aplikasinya, Siaran Radio dan Siaran Televisi yang kita nikmati saat ini berada pada pengalokasian kisaran Frekuensi seperti berikut ini :
  • Radio AM (Amplitude Modulation)                           : 535 kHz – 1.7 MHz
  • Short Wave Radio (Radio Gelombang Pendek)     : 5.9 MHz – 26.1 MHz
  • Radio CB (Citizen Band)                                               : 26.96 MHz – 27.41 MHz
  • Stasiun Televisi                                                             : 54 MHz – 88 MHz (kanal 2 ~ 6)
  • Radio FM (Frequency Modulation)                           : 88 MHz – 108 MHz
  • Stasiun Televisi                                                             : 174 MHz – 220 MHz (kanal 7 ~ 13)
Spektrum Frekuensi Radio adalah susunan pita frekuensi radio yang mempunyai frekuensi  lebih kecil dari 3000 GHz sebagai satuan getaran gelombang elektromagnetik yang merambat dan terdapat dalam dirgantara (ruang udara dan antariksa). Pengalokasian Spektrum Frekuensi Radio di Indonesia mengacu kepada alokasi frekuensi radio internasional untuk region 3 (wilayah 3) sesuai dengan peraturan Radio yang ditetapkan oleh International Telecommunication Union (ITU) atau Himpunan Telekomunisai Internasional. Penepatan Jalur atau Spektrum Frekuensi Radio yang menentukan kegunaannya ini bertujuan untuk menghindari terjadinya gangguan (Interference) dan untuk menetapkan protokol demi keserasian antara pemancar dan penerima.

Tabel Pengalokasian Spektrum Frekuensi Radio

Berikut ini adalah Tabel lengkap Spektrum Frekuensi Radio Internasional yang ditetapkan berdasarkan penentuan penggunaanya.
Nama Band (Jalur) Singkatan Frekuensi Panjang Gelombang Penggunaan
Tremendously low frequency TLF < 3Hz >100.000 km Natural Electromagnetic Noise
Extremely Low Frequency ELF 3 – 30 Hz 10.000 – 100.000 km Submarines
Super Low Frequency SLF 30 – 300 Hz 1.000 – 10.000 km Submarines
Ultra Low Frequency ULF 300 – 3.000 Hz 100 – 1.000 km Submarines, mines
Very Low Frequency VLF 3 – 30 kHz 10 – 100 km Navigation, time signal, Submarines, heart rate monitor
Low Frequency LF 30–300 kHz 1 – 10 km Navigation, time signal, Radio AM (long wave), RFID
Medium frequency MF 300 – 3.000 kHz 100 – 1.000 m Radio AM (medium wave)
High Frequency HF 3 – 30 MHz 10 – 100 m Short wave Broadcast, RFID, radar, Marine and Mobile radio telephony
Very High Frequency VHF 30 – 300 MHz 1 – 10 m Radio FM, Television, Mobile Communication, Weather Radio
Ultra High Frequency UHF 300 – 3.000 MHz 10 – 100 cm Television, Microwave device / communications, mobile phones, wireless LAN, Bluetooth, GPS, FRS/GMRS
Super High Frequency SHF 3 – 30 GHz 1 – 10 cm Microwave device / communications, wireless LAN, radars, Satellites, DBS
Extremely High Frequency EHF 30 – 300 GHz 1 – 10 mm High Frequency Microwave, Radio relay, Microwave remote sensing
Tremendously High Frequency THF 300 – 3.000 GHz 0.1 – 1 mm Terahertz Imagin, Molecular dynamics, spectroscopy, computing/communications, sub-mm remote sensing.

Pengertian Singkat Radio AM dan Radio FM

Sebagai informasi tambahan, saat ini 2 jenis siaran Radio Komersial paling sering kita temui di perangkat penerima Radio adalah Radio AM dan Radio FM. Yang dimaksud dengan AM (Amplitude Modulation) adalah proses memodulasi sinyal Frekuensi Rendah pada gelombang Frekuensi tinggi dengan mengubah Amplitudo Gelombang Frekuensi Tinggi (Frekuensi pembawa) tanpa mengubah Frekuensinya.
Sedangkan yang dimaksud dengan FM (Frequency Modulation) adalah proses mengirimkan sinyal Frekuensi rendah dengan cara memodulasi gelombang Frekuensi tinggi yang berfungsi sebagai gelombang pembawa. Jadi yang membedakan antara AM dan FM adalah proses yang digunakan dalam memodulasi Frekuensi tinggi sebagai Frekuensi pembawanya. Bentuk Frekuensi AM dan FM
Dalam bahasa Indonesia, Amplitude Modulation (AM) disebut dengan Modulasi Amplitudo sedangkan Frequency Modulation (FM) disebut dengan Modulasi Frekuensi.
Pengertian dan Fungsi Dioda Zener

Pengertian dan Fungsi Dioda Zener

12:58 AM 0

Pengertian dan Fungsi Dioda Zener

Pengertian, Prinsip Kerja dan Fungsi Dioda Zener
Pengertian dan Fungsi Dioda – Dioda Zener (Zener Diode) adalah Komponen Elektronika yang terbuat dari Semikonduktor dan merupakan jenis Dioda yang dirancang khusus untuk dapat beroperasi di rangkaian Reverse Bias (Bias Balik). Pada saat dipasangkan pada Rangkaian Forward Bias (Bias Maju), Dioda Zener akan memiliki karakteristik dan fungsi sebagaimana Dioda Normal pada umumnya. Efek Dioda jenis ini ditemukan oleh seorang Fisikawan Amerika yang bernama Clarence Melvin Zener pada tahun 1934 sehingga nama Diodanya juga diambil dari nama penemunya yaitu Dioda Zener.

Bentuk dan Simbol Dioda Zener

Dibawah ini adalah bentuk dan Simbol Dioda Zener :
Bentuk dan simbol Dioda Zener

Prinsip Kerja Dioda Zener

Pada dasarnya, Dioda Zener akan menyalurkan arus listrik yang mengalir ke arah yang berlawanan jika tegangan yang diberikan melampaui batas “Breakdown Voltage” atau Tegangan Tembus Dioda Zenernya. Karakteristik ini berbeda dengan Dioda biasa yang hanya dapat menyalurkan arus listrik ke satu arah. Tegangan Tembus (Breakdown Voltage) ini disebut juga dengan Tegangan Zener.
Untuk lebih jelas mengenai Dioda Zener, mari kita lihat Rangkaian dasar Dioda Zener dibawah ini :
Rangkaian Dasar Dioda Zener
Dalam Rangkaian diatas, Dioda Zener dipasang dengan prinsip Bias Balik (Reverse Bias), Rangkaian tersebut merupakan cara umum dalam pemasangan Dioda Zener. Dalam Rangkaian tersebut, tegangan Input (masuk) yang diberikan adalah 12V tetapi Multimeter menunjukan tegangan yang melewati Dioda Zener adalah 2,8V. Ini artinya tegangan akan turun saat melewati Dioda Zener yang dipasang secara Bias
Balik (Reverse Bias). Sedangkan fungsi Resistor dalam Rangkaian tersebut adalah untuk pembatas arus listrik. Untuk menghitung Arus Listrik (Ampere) tersebut, kita dapat menggunakan Hukum Ohm seperti dibawah ini :
(Vinput – Vzener) / R = I
(12 – 2,8) /460              = 19,6mA
Jika menggunakan Tegangan yang lebih tinggi, contohnya 24V. Maka arus listrik yang mengalir dalam Rangkaian tersebut akan semakin besar :
(24 – 2,8) / 460            = 45mA
Akan tetapi, tegangan yang melewati Dioda Zener akan sama yaitu 2,8V. Oleh karena itu, Dioda Zener merupakan Komponen Elektronika yang cocok untuk digunakan sebagai Voltage Regulator (Pengatur Tegangan), Dioda Zener akan memberikan tegangan tetap dan sesuai dengan Tegangan Zenernya terhadap Tegangan Input yang diberikan.
Pada umumnya Tegangan Dioda Zener yang tersedia di pasaran berkisar di antara 2V sampai 70V dengan daya (power) dari 500mW sampai dengan 5W.
Untuk menghitung disipasi daya Dioda Zener, kita dapat menggunakan rumus :
P = Vz I
Contoh :
P = 2,8 x 19,6
P = 54,9mW
Dioda Zener biasanya diaplikasikan pada Voltage Regulator (Pengatur Tegangan) dan Over Voltage Protection (Perlindungan terhadap kelebihan Tegangan). Fungsi Dioda Zener dalam rangkaian-rangkaian tersebut adalah untuk menstabilkan arus dan tegangan.
Analisis Regresi Linear Sederhana (Simple Linear Regression)

Analisis Regresi Linear Sederhana (Simple Linear Regression)

12:54 AM 0

Analisis Regresi Linear Sederhana (Simple Linear Regression)

Regresi Linear Sederhana (Simple Linear Regression)
Analisis Regresi Linear Sederhana – Regresi Linear Sederhana adalah Metode Statistik yang berfungsi untuk menguji sejauh mana hubungan sebab akibat antara Variabel Faktor Penyebab (X) terhadap Variabel Akibatnya. Faktor Penyebab pada umumnya dilambangkan dengan X atau disebut juga dengan Predictor sedangkan Variabel Akibat dilambangkan dengan Y atau disebut juga dengan Response. Regresi Linear Sederhana atau sering disingkat dengan SLR (Simple Linear Regression) juga merupakan salah satu Metode Statistik yang dipergunakan dalam produksi untuk melakukan peramalan ataupun prediksi tentang karakteristik kualitas maupun Kuantitas.
Contoh Penggunaan Analisis Regresi Linear Sederhana dalam Produksi antara lain :
  1. Hubungan antara Lamanya Kerusakan Mesin dengan Kualitas Produk yang dihasilkan
  2. Hubungan Jumlah Pekerja dengan Output yang diproduksi
  3. Hubungan antara suhu ruangan dengan Cacat Produksi yang dihasilkan.
Model Persamaan Regresi Linear Sederhana adalah seperti berikut ini :

Y = a + bX

Dimana :
Y = Variabel Response atau Variabel Akibat (Dependent)
X = Variabel Predictor atau Variabel Faktor Penyebab (Independent)
a = konstanta
b = koefisien regresi (kemiringan); besaran Response yang ditimbulkan oleh Predictor.
Nilai-nilai a dan b dapat dihitung dengan menggunakan Rumus dibawah ini :
a =   (Σy) (Σx²) – (Σx) (Σxy)
.                n(Σx²) – (Σx)²
b =   n(Σxy) – (Σx) (Σy)
.                n(Σx²) – (Σx)²
Berikut ini adalah Langkah-langkah dalam melakukan Analisis Regresi Linear Sederhana :
  1. Tentukan Tujuan dari melakukan Analisis Regresi Linear Sederhana
  2. Identifikasikan Variabel Faktor Penyebab (Predictor) dan Variabel Akibat (Response)
  3. Lakukan Pengumpulan Data
  4. Hitung  X², Y², XY dan total dari masing-masingnya
  5. Hitung a dan b berdasarkan rumus diatas.
  6. Buatkan Model Persamaan Regresi Linear Sederhana.
  7. Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat.

Contoh Kasus Analisis Regresi Linear Sederhana 

Seorang Engineer ingin mempelajari Hubungan antara Suhu Ruangan dengan Jumlah Cacat yang diakibatkannya, sehingga dapat memprediksi atau meramalkan jumlah cacat produksi jika suhu ruangan tersebut tidak terkendali. Engineer tersebut kemudian mengambil data selama 30 hari terhadap rata-rata (mean) suhu ruangan dan Jumlah Cacat Produksi.

Penyelesaian

Penyelesaiannya mengikuti Langkah-langkah dalam Analisis Regresi Linear Sederhana adalah sebagai berikut :

Langkah 1 : Penentuan Tujuan

Tujuan : Memprediksi Jumlah Cacat Produksi jika suhu ruangan tidak terkendali

Langkah 2 : Identifikasikan Variabel Penyebab dan Akibat

Varibel Faktor Penyebab (X) : Suhu Ruangan,
Variabel Akibat (Y) : Jumlah Cacat Produksi

Langkah 3 : Pengumpulan Data

Berikut ini adalah data yang berhasil dikumpulkan selama 30 hari (berbentuk tabel) :
Tanggal Rata-rata Suhu Ruangan Jumlah Cacat
1 24 10
2 22 5
3 21 6
4 20 3
5 22 6
6 19 4
7 20 5
8 23 9
9 24 11
10 25 13
11 21 7
12 20 4
13 20 6
14 19 3
15 25 12
16 27 13
17 28 16
18 25 12
19 26 14
20 24 12
21 27 16
22 23 9
23 24 13
24 23 11
25 22 7
26 21 5
27 26 12
28 25 11
29 26 13
30 27 14

Langkah 4 : Hitung X², Y², XY dan total dari masing-masingnya

Berikut ini adalah tabel yang telah dilakukan perhitungan X², Y², XY dan totalnya :
Tanggal Rata-rata Suhu Ruangan (X) Jumlah Cacat        (Y) X2 Y2 XY
1 24 10 576 100 240
2 22 5 484 25 110
3 21 6 441 36 126
4 20 3 400 9 60
5 22 6 484 36 132
6 19 4 361 16 76
7 20 5 400 25 100
8 23 9 529 81 207
9 24 11 576 121 264
10 25 13 625 169 325
11 21 7 441 49 147
12 20 4 400 16 80
13 20 6 400 36 120
14 19 3 361 9 57
15 25 12 625 144 300
16 27 13 729 169 351
17 28 16 784 256 448
18 25 12 625 144 300
19 26 14 676 196 364
20 24 12 576 144 288
21 27 16 729 256 432
22 23 9 529 81 207
23 24 13 576 169 312
24 23 11 529 121 253
25 22 7 484 49 154
26 21 5 441 25 105
27 26 12 676 144 312
28 25 11 625 121 275
29 26 13 676 169 338
30 27 14 729 196 378
Total (Σ) 699 282 16487 3112 6861
Langkah 5 : Hitung a dan b berdasarkan rumus Regresi Linear Sederhana
Menghitung Konstanta (a) :
a =   (Σy) (Σx²) – (Σx) (Σxy)
.               n(Σx²) – (Σx)²
a = (282) (16.487) – (699) (6.861)
                30 (16.487) – (699)²
a = -24,38

Menghitung Koefisien Regresi (b)
b =   n(Σxy) – (Σx) (Σy)
.           n(Σx²) – (Σx)²
b = 30 (6.861) – (699) (282)
.          30 (16.487) – (699)²
b = 1,45

Langkah 6 : Buat Model Persamaan Regresi

Y = a + bX
Y = -24,38 + 1,45X

Langkah 7 : Lakukan Prediksi atau Peramalan terhadap Variabel Faktor Penyebab atau Variabel Akibat

I. Prediksikan Jumlah Cacat Produksi jika suhu dalam keadaan tinggi (Variabel X), contohnya : 30°C
Y = -24,38 + 1,45 (30)
Y = 19,12
Jadi Jika Suhu ruangan mencapai 30°C, maka akan diprediksikan akan terdapat 19,12 unit cacat yang dihasilkan oleh produksi.
II. Jika Cacat Produksi (Variabel Y) yang ditargetkan hanya boleh 4 unit, maka berapakah suhu ruangan yang diperlukan untuk mencapai target tersebut ?
4 = -24,38 + 1,45X
1,45X = 4 + 24,38
X = 28,38 / 1,45
X = 19,57
Jadi Prediksi Suhu Ruangan yang paling sesuai untuk mencapai target Cacat Produksi adalah sekitar 19,57°C